3.14.27 \(\int \frac {(c (d \tan (e+f x))^p)^n}{a+b \tan (e+f x)} \, dx\) [1327]

3.14.27.1 Optimal result
3.14.27.2 Mathematica [A] (verified)
3.14.27.3 Rubi [A] (verified)
3.14.27.4 Maple [F]
3.14.27.5 Fricas [F]
3.14.27.6 Sympy [F]
3.14.27.7 Maxima [F]
3.14.27.8 Giac [F]
3.14.27.9 Mupad [F(-1)]

3.14.27.1 Optimal result

Integrand size = 27, antiderivative size = 216 \[ \int \frac {\left (c (d \tan (e+f x))^p\right )^n}{a+b \tan (e+f x)} \, dx=\frac {a \operatorname {Hypergeometric2F1}\left (1,\frac {1}{2} (1+n p),\frac {1}{2} (3+n p),-\tan ^2(e+f x)\right ) \tan (e+f x) \left (c (d \tan (e+f x))^p\right )^n}{\left (a^2+b^2\right ) f (1+n p)}+\frac {b^2 \operatorname {Hypergeometric2F1}\left (1,1+n p,2+n p,-\frac {b \tan (e+f x)}{a}\right ) \tan (e+f x) \left (c (d \tan (e+f x))^p\right )^n}{a \left (a^2+b^2\right ) f (1+n p)}-\frac {b \operatorname {Hypergeometric2F1}\left (1,\frac {1}{2} (2+n p),\frac {1}{2} (4+n p),-\tan ^2(e+f x)\right ) \tan ^2(e+f x) \left (c (d \tan (e+f x))^p\right )^n}{\left (a^2+b^2\right ) f (2+n p)} \]

output
a*hypergeom([1, 1/2*n*p+1/2],[1/2*n*p+3/2],-tan(f*x+e)^2)*tan(f*x+e)*(c*(d 
*tan(f*x+e))^p)^n/(a^2+b^2)/f/(n*p+1)+b^2*hypergeom([1, n*p+1],[n*p+2],-b* 
tan(f*x+e)/a)*tan(f*x+e)*(c*(d*tan(f*x+e))^p)^n/a/(a^2+b^2)/f/(n*p+1)-b*hy 
pergeom([1, 1/2*n*p+1],[1/2*n*p+2],-tan(f*x+e)^2)*tan(f*x+e)^2*(c*(d*tan(f 
*x+e))^p)^n/(a^2+b^2)/f/(n*p+2)
 
3.14.27.2 Mathematica [A] (verified)

Time = 0.76 (sec) , antiderivative size = 166, normalized size of antiderivative = 0.77 \[ \int \frac {\left (c (d \tan (e+f x))^p\right )^n}{a+b \tan (e+f x)} \, dx=\frac {\tan (e+f x) \left (c (d \tan (e+f x))^p\right )^n \left (a^2 (2+n p) \operatorname {Hypergeometric2F1}\left (1,\frac {1}{2} (1+n p),\frac {1}{2} (3+n p),-\tan ^2(e+f x)\right )+b \left (b (2+n p) \operatorname {Hypergeometric2F1}\left (1,1+n p,2+n p,-\frac {b \tan (e+f x)}{a}\right )-a (1+n p) \operatorname {Hypergeometric2F1}\left (1,1+\frac {n p}{2},2+\frac {n p}{2},-\tan ^2(e+f x)\right ) \tan (e+f x)\right )\right )}{a \left (a^2+b^2\right ) f (1+n p) (2+n p)} \]

input
Integrate[(c*(d*Tan[e + f*x])^p)^n/(a + b*Tan[e + f*x]),x]
 
output
(Tan[e + f*x]*(c*(d*Tan[e + f*x])^p)^n*(a^2*(2 + n*p)*Hypergeometric2F1[1, 
 (1 + n*p)/2, (3 + n*p)/2, -Tan[e + f*x]^2] + b*(b*(2 + n*p)*Hypergeometri 
c2F1[1, 1 + n*p, 2 + n*p, -((b*Tan[e + f*x])/a)] - a*(1 + n*p)*Hypergeomet 
ric2F1[1, 1 + (n*p)/2, 2 + (n*p)/2, -Tan[e + f*x]^2]*Tan[e + f*x])))/(a*(a 
^2 + b^2)*f*(1 + n*p)*(2 + n*p))
 
3.14.27.3 Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 210, normalized size of antiderivative = 0.97, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {3042, 4853, 2042, 615, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (c (d \tan (e+f x))^p\right )^n}{a+b \tan (e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (c (d \tan (e+f x))^p\right )^n}{a+b \tan (e+f x)}dx\)

\(\Big \downarrow \) 4853

\(\displaystyle \frac {\int \frac {\left (c (d \tan (e+f x))^p\right )^n}{(a+b \tan (e+f x)) \left (\tan ^2(e+f x)+1\right )}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 2042

\(\displaystyle \frac {\tan ^{-n p}(e+f x) \left (c (d \tan (e+f x))^p\right )^n \int \frac {\tan ^{n p}(e+f x)}{(a+b \tan (e+f x)) \left (\tan ^2(e+f x)+1\right )}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 615

\(\displaystyle \frac {\tan ^{-n p}(e+f x) \left (c (d \tan (e+f x))^p\right )^n \int \left (\frac {b^2 \tan ^{n p}(e+f x)}{\left (a^2+b^2\right ) (a+b \tan (e+f x))}+\frac {(a-b \tan (e+f x)) \tan ^{n p}(e+f x)}{\left (a^2+b^2\right ) \left (\tan ^2(e+f x)+1\right )}\right )d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\tan ^{-n p}(e+f x) \left (c (d \tan (e+f x))^p\right )^n \left (\frac {b^2 \tan ^{n p+1}(e+f x) \operatorname {Hypergeometric2F1}\left (1,n p+1,n p+2,-\frac {b \tan (e+f x)}{a}\right )}{a \left (a^2+b^2\right ) (n p+1)}+\frac {a \tan ^{n p+1}(e+f x) \operatorname {Hypergeometric2F1}\left (1,\frac {1}{2} (n p+1),\frac {1}{2} (n p+3),-\tan ^2(e+f x)\right )}{\left (a^2+b^2\right ) (n p+1)}-\frac {b \tan ^{n p+2}(e+f x) \operatorname {Hypergeometric2F1}\left (1,\frac {1}{2} (n p+2),\frac {1}{2} (n p+4),-\tan ^2(e+f x)\right )}{\left (a^2+b^2\right ) (n p+2)}\right )}{f}\)

input
Int[(c*(d*Tan[e + f*x])^p)^n/(a + b*Tan[e + f*x]),x]
 
output
((c*(d*Tan[e + f*x])^p)^n*((a*Hypergeometric2F1[1, (1 + n*p)/2, (3 + n*p)/ 
2, -Tan[e + f*x]^2]*Tan[e + f*x]^(1 + n*p))/((a^2 + b^2)*(1 + n*p)) + (b^2 
*Hypergeometric2F1[1, 1 + n*p, 2 + n*p, -((b*Tan[e + f*x])/a)]*Tan[e + f*x 
]^(1 + n*p))/(a*(a^2 + b^2)*(1 + n*p)) - (b*Hypergeometric2F1[1, (2 + n*p) 
/2, (4 + n*p)/2, -Tan[e + f*x]^2]*Tan[e + f*x]^(2 + n*p))/((a^2 + b^2)*(2 
+ n*p))))/(f*Tan[e + f*x]^(n*p))
 

3.14.27.3.1 Defintions of rubi rules used

rule 615
Int[((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), 
 x_Symbol] :> Int[ExpandIntegrand[(e*x)^m*(c + d*x)^n*(a + b*x^2)^p, x], x] 
 /; FreeQ[{a, b, c, d, e, m, n}, x] && ILtQ[p, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2042
Int[(u_.)*((c_.)*((d_)*((a_.) + (b_.)*(x_)))^(q_))^(p_), x_Symbol] :> Simp[ 
(c*(d*(a + b*x))^q)^p/(a + b*x)^(p*q)   Int[u*(a + b*x)^(p*q), x], x] /; Fr 
eeQ[{a, b, c, d, q, p}, x] &&  !IntegerQ[q] &&  !IntegerQ[p]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4853
Int[u_, x_Symbol] :> With[{v = FunctionOfTrig[u, x]}, Simp[With[{d = FreeFa 
ctors[Tan[v], x]}, d/Coefficient[v, x, 1]   Subst[Int[SubstFor[1/(1 + d^2*x 
^2), Tan[v]/d, u, x], x], x, Tan[v]/d]], x] /;  !FalseQ[v] && FunctionOfQ[N 
onfreeFactors[Tan[v], x], u, x, True] && TryPureTanSubst[ActivateTrig[u], x 
]]
 
3.14.27.4 Maple [F]

\[\int \frac {\left (c \left (d \tan \left (f x +e \right )\right )^{p}\right )^{n}}{a +b \tan \left (f x +e \right )}d x\]

input
int((c*(d*tan(f*x+e))^p)^n/(a+b*tan(f*x+e)),x)
 
output
int((c*(d*tan(f*x+e))^p)^n/(a+b*tan(f*x+e)),x)
 
3.14.27.5 Fricas [F]

\[ \int \frac {\left (c (d \tan (e+f x))^p\right )^n}{a+b \tan (e+f x)} \, dx=\int { \frac {\left (\left (d \tan \left (f x + e\right )\right )^{p} c\right )^{n}}{b \tan \left (f x + e\right ) + a} \,d x } \]

input
integrate((c*(d*tan(f*x+e))^p)^n/(a+b*tan(f*x+e)),x, algorithm="fricas")
 
output
integral(((d*tan(f*x + e))^p*c)^n/(b*tan(f*x + e) + a), x)
 
3.14.27.6 Sympy [F]

\[ \int \frac {\left (c (d \tan (e+f x))^p\right )^n}{a+b \tan (e+f x)} \, dx=\int \frac {\left (c \left (d \tan {\left (e + f x \right )}\right )^{p}\right )^{n}}{a + b \tan {\left (e + f x \right )}}\, dx \]

input
integrate((c*(d*tan(f*x+e))**p)**n/(a+b*tan(f*x+e)),x)
 
output
Integral((c*(d*tan(e + f*x))**p)**n/(a + b*tan(e + f*x)), x)
 
3.14.27.7 Maxima [F]

\[ \int \frac {\left (c (d \tan (e+f x))^p\right )^n}{a+b \tan (e+f x)} \, dx=\int { \frac {\left (\left (d \tan \left (f x + e\right )\right )^{p} c\right )^{n}}{b \tan \left (f x + e\right ) + a} \,d x } \]

input
integrate((c*(d*tan(f*x+e))^p)^n/(a+b*tan(f*x+e)),x, algorithm="maxima")
 
output
integrate(((d*tan(f*x + e))^p*c)^n/(b*tan(f*x + e) + a), x)
 
3.14.27.8 Giac [F]

\[ \int \frac {\left (c (d \tan (e+f x))^p\right )^n}{a+b \tan (e+f x)} \, dx=\int { \frac {\left (\left (d \tan \left (f x + e\right )\right )^{p} c\right )^{n}}{b \tan \left (f x + e\right ) + a} \,d x } \]

input
integrate((c*(d*tan(f*x+e))^p)^n/(a+b*tan(f*x+e)),x, algorithm="giac")
 
output
integrate(((d*tan(f*x + e))^p*c)^n/(b*tan(f*x + e) + a), x)
 
3.14.27.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (c (d \tan (e+f x))^p\right )^n}{a+b \tan (e+f x)} \, dx=\int \frac {{\left (c\,{\left (d\,\mathrm {tan}\left (e+f\,x\right )\right )}^p\right )}^n}{a+b\,\mathrm {tan}\left (e+f\,x\right )} \,d x \]

input
int((c*(d*tan(e + f*x))^p)^n/(a + b*tan(e + f*x)),x)
 
output
int((c*(d*tan(e + f*x))^p)^n/(a + b*tan(e + f*x)), x)